Trimethylsilyl- und Triphenylphosphanauryl-substituierte 1,3-Diboretane

Gerhard Karger, Pia Hornbach, Albrecht Krämer, Hans Pritzkow und Walter Siebert*

Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-6900 Heidelberg

Eingegangen am 30. März 1989

Key Words: Auryl substituents / 1,3-Diboretanes / Gold-substituted carbon

Die Umsetzung von 1,3-Bis(diisopropylamino)-2,4-bis(trimethylsilyl)-1,3-dihydro-1,3-diboret (3) mit Kalium bzw. Lithium in THF führt zum $2K^+(3)^{2-}$ bzw. gelben $2Li^+(3)^{2-}$, die mit HN(SiMe₃)₂ zum 1,3-Diboretan 4a reagieren. Aus (3)²⁻ und CH₂Br₂ entsteht das Isomere 4a' mit geminalen Me₃Si-Gruppen. 3 läßt sich mit H₂/Pd zu 4a hydrieren, ebenso wird aus 1,3-Bis(diisopropylamino)-1,3-dihydro-1,3-diboret das 1,3-Diboretan 4c gebildet. Umsetzung von (3)²⁻ mit CH₃I ergibt das 1,3-Diboretan 4b, mit Ph₃PAuCl wird bei -50 °C die Monogold-Verbindung 5a, bei 0°C die Digold-Verbindung 5b mit geminalen Auryl-Gruppen gebildet. 4a und 4c sind gefaltete 1,3-Diboretane, 4a', 5a und 5b mit jeweils geminalen Me₃Si-Gruppen sind nahezu planar.

1,3-Dihydro-1,3-diborete $(CR^{1})_{2}(BR^{2})_{2}$ zeichnen sich durch besondere Struktur- und Bindungsverhältnisse (nichtplanare Hückel-Systeme) aus, die von Schleyer et al.¹⁾ für den Grundkörper (CH)₂(BH)₂ auf der Basis von ab-initio-Rechnungen vorausgesagt und inzwischen anhand mehrerer Derivate strukturell bestätigt wurden²⁻⁴⁾. Die Substituenten am Bor (R²) und am Kohlenstoff (R¹) kontrollieren das Reaktionsverhalten dieser gefalteten nichtklassischen m-Systeme. Berndt et al.⁵⁾ haben durch sterisch wirksame Substituenten wie *tert*-Butyl und Duryl ($R^2 = CMe_3, C_6HMe_4$) den Zugang zu neuen, spektroskopisch und strukturell charakterisierten Verbindungsklassen gefunden. So führt die Umsetzung von (Me₃SiC)₂(Me₃CB)₂ mit Lithium zum Dianion (1,3-Diboratacyclobutadien), das als Dimeres eine Sandwichverbindung mit einer Li₄-Schicht bildet⁶. Unsere Beiträge zur Dihydrodiboret-Chemie befassen sich mit Dialkylamino-Derivaten, in denen der Elektronenmangel der Bor-Atome durch die (B-N)- π -Bindung reduziert ist. Im folgenden berichten wir über die Reduktion des 1,3-Bis(diisopropylamino)-2,4-bis(trimethylsilyl)-Derivates 3 mit Alkalimetallen und Umsetzung des gebildeten Anions mit protonenaktiven Agenzien sowie mit Triphenylphosphangoldchlorid, wodurch 1,3-Diboretane entstehen³⁾.

Ergebnisse

Synthesen

Das aus Bis(trimethylsilyl)acetylen und Tetrachlordiboran(4) in guter Ausbeute zugängliche 1,1-Bis(dichlorboryl)-2,2-bis(trimethylsilyl)ethen^{3,7)} (1) wird mittels Diisopropylamin unter Bildung von 2 (85% Ausbeute) aminiert und in THF mit Na/K-Legierung zum 1,3-Dihydro-1,3-di-

Trimethylsilyl- and Triphenylphosphineauryl-Substituted 1,3-Diboretanes

The reaction of 1,3-bis(diisopropylamino)-2,4-bis(trimethylsily)-1,3-dihydro-1,3-diborete (3) with potassium or lithium in THF leads to $2 \text{ K}^+(3)^{2-}$ or yellow $2 \text{ Li}^+(3)^{2-}$, which are protonated with HN(SiMe₃)₂ to yield the 1,3-diboretane 4a. (3)²⁻ and CH₂Br₂ form the isomer 4a' having geminal Me₃Si groups. 3 is hydrogenated with H₂/Pd to 4a, likewise the 1,3-bis(diisopropylamino)-1,3-dihydro-1,3-diborete yields the 1,3-diboretane 4c. Reaction of (3)²⁻ with CH₃I leads to the 1,3-diboretane 4b, with Ph₃PAuCl at -50° C the monogold compound 5a, at 0°C the digold compound 5b with geminal auryl groups are formed. 4a und 4c are folded 1,3-diboretanes, whereas 4a', 5a, and 5b, each having geminal Me₃Si groups, are almost planar.

boret 3 enthalogeniert. Eine Enthalogenierung von $(Me_3Si)_2$ - $C = C(BCl_2)_2$ ergibt nicht die zu 3 analoge Chlor-Verbindung. 3 läßt sich mit zwei Äquivalenten Kalium in Petrolether (Siedebereich 40-60°C) zum schwerlöslichen $2K^+(3)^{2-}$ umsetzen, das nach NMR-Befunden in C₆D₆ zwei Äquivalente Tetrahydrofuran enthält. Mit Lithium entsteht gelbes, in Pentan lösliches $2Li^+(3)^{2-}$.

Das extrem luftempfindliche $2K^+(3)^{2-}$ reagiert mit protonenaktiven Agenzien wie HCCl₃ oder HN(SiMe₃)₂ zu dem 1,3-Bis(diisopropylamino)-2,4-bis(trimethylsilyl)-1,3-diboretan (4a) (65% Ausbeute), während mit CH₂Br₂ in geringer Ausbeute das zu 4a isomere 2,2-Bis(trimethylsilyl)-1,3-diboretan (4a') entsteht. Die Synthese von 4a gelingt auch durch Hydrierung von 3 an Palladium/Aktivkohle mit 85% Ausbeute, ebenso läßt sich 1,3-Dihydro-1,3-bis(diisopropylamino)-1,3-diboret⁸⁾ mittels H₂/Pd-C zum 1,3-Diboretan (H₂C)₂[(Me₂CH)₂NB]₂ (4c) hydrieren. Mit Methyliodid reagiert 2K⁺(3)²⁻ zu dem dimethylierten 1,3-Diboretan 4b.

Bei der Umsetzung von $2K^+(3)^{2-}$ mit ClAuPPh₃ im Molverhältnis 1:1 entsteht bei -50 °C das farblose Monogold-Substitutionsprodukt **5a**, bei 0 °C jedoch die gelbe Digold-Verbindung **5b**³.

Eigenschaften und Spektren

Die Konstitutionen der Verbindungen 4a, 4a', 4b, 4c, 5a und 5b ergeben sich aus den ¹H-, ¹¹B-, ¹³C- und ³¹P-NMR-Spektren (s. Exp. Teil); sie sind durch Röntgenstrukturanalysen (s. unten) für 4a, 4a', 4c, 5a und 5b bewiesen.

Farbloses, sauerstoff- und wasserstabiles **4a** schmilzt bei 125°C und ist in Pentan mäßig, in Benzol und THF gut löslich. Die Addition von Wasserstoff an **3** bzw. von Protonen an (**3**)²⁻ erkennt man an dem ¹H-NMR-Signal bei $\delta = 0.69$, die Signallage der Trimethylsilyl- und Diisopropylamino-Protonen ist im Vergleich zu **3** nur geringfügig nach tieferem Feld verschoben. Das ¹¹B-NMR-Signal erfährt ebenfalls eine Tieffeldverschiebung ($\delta = 43.5$), während die Signale der Ring-Kohlenstoff-Atome eine Hochfeldverschiebung aufweisen, die allerdings mit $\Delta \delta = -11$ sehr gering ist.

Bei der Umsetzung von $(3)^{2-}$ mit CH₂Br₂ entsteht die Verbindung 4a', die aufgrund der NMR-Daten ein Isomeres von 4a darstellt. Im ¹H-NMR-Spektrum ergeben die Me₃Si-Gruppen zwei Singuletts, weiterhin werden ein Signal bei $\delta = 0.64$ für zwei Protonen sowie zwei Dubletts und zwei Septetts für die Diisopropylamino-Protonen gefunden. Im ¹³C-NMR treten ebenfalls je zwei Signale für die Me₃Si-Gruppen und die Methyl- sowie Methin-Kohlenstoff-Atome der $(Me_2CH)_2$ N-Gruppen auf. Bei $\delta = 18$ erscheint ein stark verbreitertes Ring-C-Signal ($b_{1/2} = 220$ Hz); da es sich im ¹H-entkoppelten ¹³C-NMR-Spektrum nicht verändert, sollte es sich um das (Me₃Si)₂C-Signal handeln. Ein separates ¹³C-Signal für die CH2-Gruppe konnte nicht gefunden werden. Im Gegensatz zu 4a sind bei geminaler Anordnung der Silyl-Substituenten zwei ¹³C-Signale für die Methin-C-Atome der (Me₂CH)₂N-Gruppe aufgrund der (BN)-π-Bindung zu erwarten. Durch Umsetzung von $(3)^{2-}$ mit CH₃I entsteht 4b, das ein Singulett bei $\delta = 1.23$ für zwei CH₃-Gruppen zeigt. Da sowohl im ¹H- als auch im ¹³C-NMR-Spektrum gegen-

über 4a nur eine geringfügige Änderung der chemischen Verschiebungen auftritt, schließen wir auf eine äquatoriale Lage beider Methyl-Gruppen in 4b. Das ¹H-NMR von 4c zeigt ein Singulett für CH₂, zwei Dubletts und ein Septett, was durch eine rasche Ringinversion des im Festkörper nicht planaren Diboretans verursacht sein kann. Im ¹H-NMR-Spektrum der Monogold-Verbindung 5a sind die Me₃Si-Gruppen chemisch inäquivalent, die Protonen der Diisopropylamino-Gruppen ergeben vier Dubletts sowie zwei Septetts. Einen Beweis für die Konstitution von 5a liefert das Dublett-Signal für den am Ring gebundenen Wasserstoff $({}^{3}J_{P-H} = 7.7 \text{ Hz})$, was typisch für Verbindungen mit einer starren H-C-AuPPh₃ Anordnung ist⁹. Im ¹³C-NMR-Spektrum werden ebenfalls zwei Signale für Me₃Si, vier Signale für die Methyl- und zwei für die Methin-Kohlenstoff-Atome der (Me₂CH)₂N-Gruppen gefunden. Der ³¹P-NMR-Wert liegt mit $\delta = 39.4$ im Bereich anderer Alkylgold(I)-Phosphan-Komplexe. Auffallend ist die große Halbwertsbreite des ¹¹B-Signals von 1.5 kHz mit dem Maximum zwischen $\delta = 40$ und 50. Während 5a bei -50° C entsteht, bildet sich bei 0°C die gelbe Digold-Verbindung 5b, die aus Pentan kristallisiert (Schmp. 137°C) und im Kristall gegen Luftsauerstoff stabil ist, in Lösung sich jedoch langsam unter Bildung eines Gold-Spiegels zersetzt.

Im ¹H-NMR-Spektrum ergeben die Me₃Si-Gruppen ein Singulett bei $\delta = 0.63$, die Methyl-Gruppen des (Me₂CH)₂N-Substituenten ein Dublett ($\delta = 1.48$) mit Schulter bei tieferem Feld. Ein Septett bei $\delta = 4.59$ sowie ein stark verbreitertes Signal bei $\delta \approx 6.2$ entsprechen den Methin-Protonen der Diisopropylamino-Gruppe. Bei Temperaturerniedrigung auf -70 °C ([D₈]Toluol) zeigen die Methin-Protonen zwei Multipletts im Verhältnis 1:1. Die ungewöhnliche Tieffeldlage des "Septetts" bei $\delta \approx 6.2$ führen wir auf den großen Anisotropieeffekt der Ph₃PAu-Gruppen zurück.

Im ¹³C-NMR-Spektrum wird ein Signal für Me₃Si und ein Signal ($\delta = 27.1$) für die Methyl-Gruppen von (Me₂CH)₂N gefunden. Die Methin-C-Atome ergeben zwei Signale bei $\delta = 48.3$ und 49.4. Die ³¹P-NMR-Verschiebung liegt bei $\delta =$ 36.8; ein exakter Wert für die ¹¹B-Resonanz kann aufgrund der großen Halbhöhenbreite nicht angegeben werden. Mit den hier für **5b** angegebenen NMR-Daten korrigieren wir die publizierten Ergebnisse³⁾ einer Probe, die offensichtlich aus einem Gemisch von **5a** und **5b** bestand.

Röntgenstrukturanalysen von 4a, 4a', 4c, 5a und 5b

In Tab. 1 sind die Abstände und Winkel für 4a, 4a', 4c, 5a und 5b aufgeführt. Die Molekülstruktur von 4a (Abb. 1) zeigt einen gefaltenen Ring mit den Trimethylsilyl-Gruppen in axialer Position. Das Molekül besitzt angenähert C_{2v} -Symmetrie, wenn man von den Methyl-Gruppen absieht. Die C-B-Abstände betragen 1.58-1.59 Å. Dagegen wird für das Isomere 4a' mit geminalen Trimethylsilyl-Gruppen ein nahezu planarer Ring gefunden (Abb. 2). Der Temperaturfaktor für das H-substituierte Ringatom C2 senkrecht zur Ringebene ist aber sehr groß, so daß eine Fehlordnung in dieser Richtung nicht ausgeschlossen werden kann: Der Rest des Rings mit den voluminösen Substituenten nimmt eine definierte Lage ein, die dazu relativ kleine CH₂-Gruppe besetzt zwei Lagen, deren Mittel den planaren Ring ergibt. Die Abstände und Winkel für diesen Teil des Rings sind daher nicht verläßlich, die beiden anderen C1 – B-Abstände sind aber länger als im Falle von **4a**.

Abb. 1. Molekülstruktur von 4a

Abb. 2. Molekülstruktur von 4a'

Die Geometrie des Vierrings in 4c (Abb. 3) stimmt gut mit der von 4a überein. Der kleinere Faltungswinkel des Ringes in 4a ist auf die sterischen Wechselwirkungen zwischen den Trimethylsilyl-Gruppen zurückzuführen.

Abb. 3. Molekülstruktur von 4c

Der Vierring in **5a** (Abb. 4) ist nur noch wenig gefaltet (11°) und die C-B-Abstände an dem mit zwei Trimethyl-

silyl-Gruppen substituierten Kohlenstoff-Atom C1 sind deutlich länger als die an C2, die in dem Bereich liegen, der in 4a und 4c gefunden wurde. Auch die Winkel im Ring an C1 und C2 unterscheiden sich: Während der Winkel B1-C1-B2 sich gegenüber den Winkeln in 4a und 4c nicht ändert, hat B1-C2-B2 um 7° zugenommen. Das Gold-Atom zeigt die für Alkylgold(I)-Phosphan-Komplexe typische lineare C-Au-P-Anordnung.

In **5b** (Abb. 5) ist der Vierring nahezu planar (max. Abweichung 0.015 Å, Faltungswinkel 3°). Die Abstände und Winkel an den Ring-Kohlenstoff-Atomen stimmen im Rahmen der Meßgenauigkeit mit den Werten in **5a** überein. Die Geometrie der Ph₃PAu-Substituenten entspricht weitgehend den bekannten Strukturen geminal substituierter Verbindungen. Der Au-Au-Abstand von 2.98 Å und der kleine Au-C-Au Winkel (91°) sind ein Indiz für eine Au-Au-Wechselwirkung¹⁰. Die Gold-Atome liegen nicht symmetrisch zur Ringebene, Au1 ist stärker über die Ringebene gedreht und damit in die Nähe einer Trimethylsilyl-Gruppe.

Abb. 4. Molekülstruktur von 5a

Abb. 5. Molekülstruktur von 5b

Die Molekülstrukturen der Verbindungen 4a, 4a', 4c, 5a und 5b zeigen Unterschiede in der Geometrie des Vierrings. Während der Ring in 4a', 5a und 5b nahezu planar ist, ist er in 4a und 4c zwar nicht so stark wie in 1,3-Dihydro-1,3diboreten, aber doch deutlich gefaltet. In den fünf Verbindungen sind die Bor-Atome jeweils mit Diisopropylamino-Gruppen, die Kohlenstoff-Atome aber unterschiedlich substituiert. In den drei nahezu planaren Ringen sind die Trimethylsilyl-Gruppen an dasselbe Kohlenstoff-Atom (C1), in 4a aber an zwei Kohlenstoff-Atome gebunden. Die Trimethylsilyl-Gruppen sitzen hier aus sterischen Gründen in der axialen Position, was auch für 4b angenommen wird. Die Lage der Diisopropylamino-Gruppe ist durch die (BN)-π-Bindung festgelegt. Dadurch bietet die äquatoriale Position am Kohlenstoff-Atom weniger Platz für die Trimethylsilyl-Gruppen. Bei zwei Trimethylsilyl-Gruppen am selben Kohlenstoff-Atom kommt es zu sterischen Wechselwirkungen mit der Diisopropylamino-Gruppe. Dies führt zu einer Einebnung des Rings, wodurch die Trimethylsilyl-Gruppen symmetrisch zur Ebene durch $B = NC_2$ stehen und damit gleich weit entfernt. Die starke sterische Wechselwirkung bewirkt außerdem eine Verlängerung der C-B-Abstände am geminal substituierten Kohlenstoff-Atom. Wie ein Vergleich der unterschiedlich substituierten Ring-Kohlenstoff-Atome zeigt, ist die Aufweitung des Abstands allein auf sterische Effekte zurückzuführen. Eine Silyl-Gruppe allein wie in 4a bewirkt keine Verlängerung gegenüber einem H-Atom wie in 4c. Die Ph₃PAu-Gruppe ist im Vergleich zur Trimethylsilyl-Gruppe sterisch weniger anspruchsvoll.

Die gefaltete Ringstruktur für 1,3-Diboretane ist die energetisch günstige Konformation (Energiedifferenz ca. 10 kcal/ mol zur planaren Anordnung¹).

Ein Vergleich der symmetrisch substituierten Diboretane 4a und 4c mit den entsprechend substituierten Dihydrodiboreten²⁻⁴) zeigt die aufgrund von ab-initio-Berechnungen vorhergesagten Unterschiede¹⁾. Die C-B Abstände in Diboretanen sind mit 1.58-1.59 Å länger als in Dihydrodiboret-Ringen (1.51 - 1.52 Å). Die Faltung der Ringe ist geringer (Faltungswinkel entlang C1 · · · C2 32° bzw. 39°) als in Dihydrodiboreten $(47-59^\circ)$. Beim Übergang vom Dihydrodiboret zum Diboretan nehmen die Ringwinkel am Bor stark zu (von $70-74^{\circ}$ auf $95-97^{\circ}$) und am Kohlenstoff in etwas geringem Maße ab (von $89-97^{\circ}$ auf $79-80^{\circ}$). In der dimeren 1,3-Diboretan – Dilithium-Verbindung⁶⁾ $2Li^{+}[(Me_{3}CB)_{2}(Me_{3}SiC)_{2}]^{2-}$ werden die Winkel am Bor noch größer (102°) und am Kohlenstoff kleiner (71°). Der Faltungswinkel entlang des $C \cdots C$ -Vektors (48°) liegt im Bereich der Faltung für 1,3-Dihydro-1,3-diborete. Durch die stark veränderten Ringwinkel finden Berndt et al.69 einen sehr kurzen B · · · B · (1.82 Å) und einen langen C · · · C · Abstand (2.45 Å) im Gegensatz zu 1,3-Dihydro-1,3-diboreten, bei denen ein kurzer C · · · C- (1.75 - 1.81 Å) und ein langer **B**····**B**-Abstand (2.13–2.28 Å) auftreten. In den 1,3-Diboretanen beobachten wir keine transannularen Wechselwirkungen (B1 \cdots B2 2.02 – 2.12, C1 \cdots C2 2.33 – 2.49 Å).

Diskussion

Das nichtklassische 2- π -System 3 und das gesättigte Diboretan 4a unterscheiden sich in Struktur und Reaktivität. Während 4a keine Reaktion mit Luft zeigt, führt bei 3 der Kontakt mit Sauerstoff zur Bildung schwerlöslicher Produkte. Als ungesättigtes System läßt sich 3 glatt unter Bildung von **4a** hydrieren und mit NaK-Legierung bzw. Li zum Dianion $(3)^{2-}$ reduzieren. Die Struktur des gelben, extrem luftempfindlichen Salzes konnte wegen schlechter Kristallqualität nicht geklärt werden. Wir nehmen an, daß bei dem in Pentan löslichen Dilithiumboretanid $2 \text{Li}^+(3)^{2-}$ eine analog zu der von Berndt et al.⁶ für das Dimere 2Li^+ -[(Me₃CB)₂(Me₃SiC)₂]²⁻ beschriebene Sandwich-Anordnung vorliegt.

Die unterschiedlichen elektronischen Verhältnisse in 3 und 4a werden durch die ¹¹B- und ¹³C-NMR-Spektren charakterisiert. Im ¹¹B-NMR-Spektrum findet man eine Verschiebung von $\Delta\delta = 12.1$ nach tieferem Feld, die durch den Abzug von Elektronendichte als Folge der Ausbildung neuer σ -Bindungen in 4a verursacht wird. Die Aufhebung des delokalisierten 2- π -Elektronensystems bewirkt erwartungsgemäß längere B-C-Bindungen (1.52 vs. 1.58 Å).

Änderungen der Winkel beruhen auf der unterschiedlichen Hybridisierung der Ring-Kohlenstoff-Atome. Eine starke Abweichung vom Tetraederwinkel wurd durch die beträchtliche Ringspannung verursacht, die in 3 aufgrund der formal sp²-hybridisierten Ring-Kohlenstoff-Atome ebenfalls vorhanden sein muß. Die mit unterschiedlicher Hybridisierung einhergehende starke Verschiebung im ¹³C-NMR-Spektrum wird bei 3 und 4a nicht beobachtet, die Differenz von 11 ppm zeigt lediglich die erwartete Tendenz an.

Wie in Tab. 1 dargelegt, wird die durch ab-initio-MO-Rechnungen von Schleyer et al.¹⁾ ermittelte Struktur des $(CH_2)_2(BH)_2$ -Systems durch die röntgenographischen Daten von **4a** und **4c** experimentell bestätigt. Dagegen weicht das isomere **4a'** beträchtlich von der vorausgesagten gefalteten Geometrie ab, was in erster Linie auf die geminale Anordnung der beiden Me₃Si-Gruppen und deren Wechselwirkung mit den Diisopropylamino-Gruppen zurückzuführen ist.

Zur Bildung von 4a' aus $(3)^{2-}$ und CH_2Br_2 nehmen wir an, daß eine Oxidation unter Me₃Si-Wanderung zu dem Carben (Me₃Si)₂C(RB)₂C: [R = (*i*Pr)₂N] erfolgt, aus dem unter Aufnahme von Wasserstoff aus dem Lösungsmittel 4a' entsteht. Eine analoge Carben-Zwischenstufe wird von Berndt et al.¹¹ bei der Bildung von 1,3-Diboretanen aus einem 2-*tert*-Butylborandiylboriran postuliert. Theoretische Untersuchungen am C₂B₂H₄-System ergeben für das entsprechende Carben ein lokales, durch H₃Si-Substituenten begünstigtes Energieminimum¹².

Die Bildung von **4a** durch Protonierung von $(3)^{2-}$ sollte über das Monoanion **A** erfolgen, das nach Singlett-MNDO/ 2-Rechnungen¹³⁾ um 10 kcal/mol stabiler als das Monoanion **B** mit geminalen Me₃Si-Gruppen ist. Wie die experimentellen Befunde zeigen, tritt keine Me₃Si-Wanderung (**A** \rightarrow **B**), sondern Protonierung von **A** zu **4a** ein.

Dagegen lagert sich das aus $(3)^{2-}$ und $(AuPPh_3)^+$ gebildete C unter Silyl-Gruppenwanderung in D um. Bei 0°C reagiert die zweite Triphenylphosphangold-Gruppe unter Bildung von gelbem 5b, während bei -50°C das Monoanion D nicht auriert, sondern zu farblosem 5a protoniert wird.

In **5a** ersetzt das AuPPh₃-Fragment ein Wasserstoff-Atom (Isolobalanalogie¹⁴⁾ H $\leftarrow \rightarrow$ AuPPh₃). Das Auftreten eines kurzen Metall-- Metall-Abstandes (2.98 Å) in **5b** spiegelt die große Tendenz der Gold-Atome zu 5d¹⁰-5d¹⁰-Wechselwirkungen wider. Diese werden durch Einmischung der 6s²-Zustände hervorgerufen¹⁵, deren Energie durch relativistische Effekte abgesenkt ist¹⁶. Prinzipiell sollte das Strukturelement (Ph₃P-Au)₂CB₂ in **5b** auch zum Aufbau von Polyauriomethanen¹⁷ unter Spaltung der Kohlenstoff-Bor-Bindung geeignet sein.

Wir danken der Deutschen Forschungsgemeinschaft, dem Land Baden-Württemberg, dem Fonds der Chemischen Industrie, der BASF AG und der Degussa AG für die Förderung dieser Arbeit.

Experimenteller Teil

NMR-Spektren: Bruker AC-200 (¹H, ¹³C), Jeol FX-90 (¹¹B, ³¹P); Standard: TMS (ext.), Et_2O-BF_3 (ext.), 85% H₃PO₄ (ext.). – Massenspektren: Varian MAT CH7, 70 eV. – Alle Versuche wurden unter nachgereinigtem Stickstoff bzw. unter Argon durchgeführt.

Nach Literaturvorschrift¹⁹⁾ wurde B_2Cl_4 hergestellt und mit $Me_3SiC \equiv CSiMe_3$ bei $-80^{\circ}C$ zu 1 umgesetzt^{3,7,20)}.

1,3-Bis (diisopropylamino)-2,4-bis (trimethylsilyl)-1,3-dihydro-1,3-diboret²¹⁾ (3): Zu 5.01 g (15 mmol) 1 in 100 ml Petrolether (PE) (Siedebereich 40 – 60 °C) werden bei 0 °C 6.06 g (60 mmol) HN(*i*Pr)₂ getropft, wobei sofort ein farbloser Niederschlag entsteht. Nach 1 h Erhitzen zum Rückfluß wird H₂N(*i*Pr)₂Cl abfiltriert, PE i. Vak. entfernt und **2** bei 140 °C/0.01 Torr sublimiert; Ausb. 6.47 g (93%) **2**. Schmp. 94 – 96 °C. – ¹H-NMR (CDCl₃): δ = 0.33 (s, 18H, CH₃Si), 1.18, 1.26, 1.46, 1.57 [d, je 6H, ³J(HH) = 6.6 Hz], 3.46, 4.24 (sept, je 2H). – ¹¹B-NMR (CDCl₃): δ = 35.4. – ¹³C-NMR (C₆D₆): δ = 3.56 (SiCH₃), 20.39, 22.37, 22.56, 23.80 (NCCH₃), 46.37, 52.29 (NCCH₃), 163 (CSi), 180 (CB). – MS (EI): *m/z* (%) = 462 (31) [M⁺], 426 (12) [M⁺ – HCl], 398 (20) [M⁺ – SiMe₃], 354 (23) [M⁺ – Me₃SiCl], 281 (46) [M⁺ – Cl₂BNiPr₂], 208 (44) [Me₃SiC₂BNiPr₂⁺], 73 (56) [Me₃Si⁺], 43 (100) [C₃H₇⁺].

Zu 1.12 g (33 mmol) NaK₈ und 20 ml THF werden bei 0 °C 6.93 g (15 mmol) 2 in 50 ml THF gegeben. Nach 6 h Rühren bei 25 °C wird gebildetes NaCl/KCl-Gemisch abfiltriert, THF i. Vak. entfernt und 3 bei 120 – 130 °C/0.01 Torr sublimiert; 2.35 g (40%) 3, Schmp. 170 °C (aus PE). In Benzol erfolgt bei 25 °C keine Umsetzung, 30 d Erhitzen zum Rückfluß liefert 23% 3, 20 h Reaktion in siedendem Toluol ergibt 38% 3. – ¹H-NMR (CDCl₃): δ = 0.08 (s, 18H, CH₃Si), 1.09, 1.12 (d, je 12H, CHCH₃), 3.44 [sept, 4H, ³J(HH) = 6.6 Hz]. – ¹¹B-NMR (CDCl₃): δ = 31.4. – ¹³C-NMR (CDCl₃): δ = 1.20 (CH₃Si), 23.13, 24.85 (NCCH₃), 37 (br., CB), 49.47 (NC). – MS (EI) *m/z* (%) = 392 (92) [M⁺], 377 (20) [M⁺ – Me], 349 (18)

 $[M^+ - C_3H_7]$, 291 (19) $[M^+ - HNiPr_2]$, 73 (99) $[SiMe_3^+]$, 43 (100) $[C_3H_7^+]$.

$$\begin{array}{ccc} C_{20}H_{46}B_2N_2Si_2 \ (392.4) & \text{Ber. C } 61.17 \ \text{H } 11.82 \ \text{N } 7.14 \\ & \text{Gef. C } 61.20 \ \text{H } 11.84 \ \text{N } 7.00 \end{array}$$

Dikalium- bzw. Dilithium-1,3-bis(diisopropylamino)-2,4-bis(trimethylsilyl)-1,3-diboretandiid [K₂(3), Li₂(3)]: Zu 1.50 g (44 mmol) NaK₈ in 10 ml THF werden bei 0°C 4.62 g (10 mmol) 2 in 40 ml THF getropft und 15 bzw. 25 h bei 20°C gerührt. Von gebildetem NaCl, KCl und nicht umgesetzter Legierung wird abfiltriert, THF i. Vak. entfernt und der Rückstand mit PE aufgeschlämmt. Der feine Niederschlag wird abgetrennt und i. Hochvak. getrocknet. Er enthält ca. 2 Äquivalente THF (¹H-NMR), die auch beim Erwärmen auf 50°C nicht zu entfernen sind. Oberhalb 150°C zersetzt sich 2K '(3)²⁻ zu schwarzen Produkten. Aus den rotbraunen PE-Lösungen werden 3 bzw. 4a durch Sublimation isoliert. Ausb. (nach 15 h): 4.79 g (78%) 2K '(3)²⁻, 0.71 g (16%) 3; (nach 25 h): 2.46 g (40%) 2K '(3)²⁻, 0.51 g (13%) 4a.

392 mg (1.0 mmol) 3 und 75 mg (2.2 mmol) NaK₈ werden in 5 ml THF 15 h gerührt. Nach Filtration und Entfernen des THF i. Vak. wird mit PE versetzt, filtriert und der gelbliche Rückstand i. Hochvak. getrocknet; Ausb. 100 mg (16%) $2K^+(3)^{2-}$. – ¹H-NMR (C₆D₆): $\delta = 0.26$ (s, 18H), 1.33 (d, 24H), 3.11 [sept, 4H, ³J(HH) = 6.5 Hz], 1.44 (m, THF), 3.53 (m, THF). – ¹¹B-NMR (C₆D₆): $\delta = 11-15$ (br. s, $b_{1/2} = 1.2$ kHz).

2.35 g (5.08 mmol) 2 in 30 ml THF werden zu 0.15 g (21.40 mmol) Lithium in 20 ml THF getropft, wobei nach ca. 15 min eine schwach exotherme Umsetzung einsetzt. Nach 3 d wird filtriert (nicht umgesetztes Li nach Reaktion mit H₂O mittels 0.1 N HCl bestimmt, 85% Umsatz), THF i. Vak. entfernt und in PE aufgenommen. Aus der PE-Lösung erhält man ein gelb-oranges, zähes Öl, dessen ¹H-NMR-Spektrum wiederum koordiniertes THF zeigt. Umsetzung von $2 \text{Li}^+(3)^{2-}$ mit Ph₃PAuCl ergibt die Digold-Verbindung **5b** (Ausb. 20%).

1.3-Bis(diisopropylamino)-2,4-bis(trimethylsilyl)-1.3-diboretan (4a): a) 0.307 g (0.55 mmol) $2K^+(3)^{2-}$ und 0.161 g (1.00 mmol) HN(SiMe₃)₂ werden in 5 ml THF 30 min gerührt, danach wird THF i. Vak. entfernt und es werden 0.128 g (65%) 4a bei 95°C/0.01 Torr aus dem Rückstand sublimiert.

b) 0.392 g (1 mmol) 3 und 112 mg Pd/Aktivkohle werden in 30 ml PE unter H₂ (ca. 70 ml) 2 d gerührt. Nach Filtration und Entfernen des PE i. Vak. werden wenig 3 und 0.335 g (85%) 4a sublimiert, Schmp. 125 °C (aus PE bei -20 °C). - ¹H-NMR (CDCl₃): $\delta = 0.10$ (s, 18H, CH₃Si), 0.69 (s, 2H, SiCH), 1.13, 1.14 (d, je 12H, CCH₃), 3.58 [sept, 4H, ³J(HH) = 7 Hz]. - ¹¹B-NMR (CDCl₃): $\delta = 43.5. -$ ¹³C-NMR (CDCl₃): $\delta = 3.93$ (q, CH₃Si), 23.46 (q, CCH₃), 23.88 (q, CCH₃), 26 [br. d, ¹J(HC) ≈ 125 Hz), 47.94 (d, NCH). - ²⁹Si-NMR (CDCl₃): $\delta = 4.5. -$ MS (EI): m/z (%) = 394 (25) [M⁺], 379 (100) [M⁺ - Me], 294 (11) [M⁺ - NiPr₂], 73 (20) [SiMe₃⁺], 43 (19) [C₃H₇⁺].

 $\begin{array}{cccc} C_{20}H_{48}B_2N_2Si_2 \ (394.4) & \mbox{Ber. C} \ 60.90 \ \ H \ 12.26 \ \ N \ 7.10 \\ & \mbox{Gef. C} \ 60.83 \ \ H \ 12.15 \ \ N \ 6.91 \end{array}$

1,3-Bis(diisopropylamino)-2,2-bis(trimethylsilyl)-1,3-diboretan (4a'): Zu 1.65 g (2.7 mmol) $2K^{+}(3)^{2-}$ in 10 ml THF werden bei -90°C 0.47 g (2.7 mmol) $CH_{2}Br_{2}$ getropft. Beim Erwärmen auf 20°C bildet sich KBr, das abgetrennt wird. Nach Entfernen von THF i. Vak. wird 4a' bei 140°C/0.01 Torr destilliert und aus PE bei -20°C kristallisiert; Ausb. 0.58 g (53%) 4a', Schmp. 35-37°C. - ¹H-NMR (C₆D₆): $\delta = 0.26, 0.27$ (s, je 9H, CH₃Si), 0.64 (s, 2H, BCH), 1.06 [d, 12H, NCCH₃, ³J(HH) = 6.6 Hz], 1.28 [d, 12H, NCCH₃, ³J(HH) = 7 Hz], 3.18 [sept, 2H, NCH, ³J(HH) = 7 Hz], 4.11 [sept, 2H, NCH, ³J(HH) = 6.6 Hz]. - ¹¹B-NMR (C₆D₆): $\delta = 47. - ^{13}C-NMR (C_6D_6: \delta = 1.34 (q, CH₃Si),$ 4.02 (q, CH₃Si), 18 (br., BC), 22.78 (q, NCCH₃), 24.89 (q, NCCH₃), 45.56 (d, NCH), 49.99 (d, NCH). - MS (EI): m/z (%) = 393 (100) [M⁺ - H], 379 (83) [M⁺ - Me], 294 (85) [M⁺ - NiPr₂], 73 (65) [SiMe₃⁺], 43 (64) [C₃H₇⁺].

Bei der Oxidation von $2K^+(3)^{2-}$ mit CdCl₂ entstehen **4a**' (43%) und Cd(0), mit TII ebenfalls **4a**' (41%) und Tl(0).

Tab. 1. Abstände [Å] und Winkel [°] für 4a, 4a', 4c, 5a und 5b

	42	4a'	4c*)	(BH) 2 (CH2)	21) 5ab)	5bc)
C1 - B1	1.587(5)	1.634(6)	1.589(4)	1.587	1.664(8)	1.62(3)
C1 - B2	1.582(8)	1.636(6)	1.585(4)		1.675(8)	1.64(3)
C2 - B1	1.582(8)	1.566(9)	1,579(5)		1.568(8)	1.53(3)
C2 - B2	1.591(5)	1.577(8)	1.577(4)		1.542(8)	1.55(3)
B1 - N1	1.389(5)	1.393(6)	1.379(4)		1.392(8)	1.45(3)
B2 - N2	1.395(6)	1.380(6)	1.385(3)		1.417(8)	1.41(2)
C1 - Si1	1.876(4)	1.872(3)			1.871(5)	1.893(10)
C1(2)-Si2	1.861(4)	1.872(4)			1.879(4)	1.869(10)
B1-C1-B2	79.3(3)	81.1(3)	79.1(2)	78.6	79.2(3)	80.7(12)
B1-C2-B2	79.2(3)	85.2(3)	79.7(2)		86.3(4)	86.4(13)
C1-B1-C2	96.9(3)	97.0(4)	94.5(2)	95.1	96.4(4)	97.1(15)
C1-B2-C2	96.7(3)	96.5(4)	94.8(2)		96.9(4)	95.7(14)
E1/E2 ^d)	32.1	4.0	39.1	36.2	12.3	3.6
E3/E4	27.6	3.6	34.3	35.1	10.9	3.2

^{a)} **4c**: 1,3-[(Me₂CH)₂NB]₂(H₂C)₂. - ^{b)} C2-Au1 2.093(5); Au1-P1 2.275(1). - ^{c)} C2-Au1(2) 2.084(8), 2.083(9); Au1-P1 2.278(3); Au2-P2 2.281(3); Au1-Au2 2.976(1); Au1-C2-Au2 91.1(3). - ^{d)} Winkel zwischen den Ebenen: E1 durch C1,B1,C2; E2 durch C1,B2,C2; E3 durch B1,C1,B2; E4 durch B1,C2,B2.

1.3-Bis(diisopropylamino)-1.3-diboretan (4c): Zu einer Lösung von 0.625 g (2.5 mmol) 1,3-Diisopropylamino-1,3-dihydro-1,3diboret²¹⁾ in 40 ml *n*-Pentan werden 60 mg Pd/Aktivkohle (5% Pd) gegeben und 24 h H₂ in die Suspension geleitet. Nach Filtration wird die Lösung eingeengt und 4c bei 5°C auskristallisiert; Ausb. 0.53 g (84%) 4c, Schmp. 48.5°C. – ¹H-NMR (CDCl₃): $\delta = 0.49$ (s, 4H, CH₂), 1.119 [d, 12H, ³J(HH) = 6.8 Hz], 1.121 (d, 12H, CCH₃), 3.59 (sept, 4H, NCH). – ¹¹B-NMR (CDCl₃): $\delta = 45.$ – ¹³C-NMR (CDCl₃): $\delta = 17.9$ (t, CH₂), 24.05 (q, CCH₃), 48.13 (d, NCH).

1,3-Bis(diisopropylamino)-2,4-dimethyl-2,4-bis(trimethylsilyl)-1,3-diboretan (**4b**): Bei -80 °C werden 1.60 g (2.0 mmol) 2K $^+$ (3)²⁻ in 20 ml THF mit 0.74 g (5.2 mmol) CH₃I versetzt, wobei KI ausfällt. Nach Auftauen und Entfernen des THF i. Vak. wird **4b** bei 125-130 °C/0.01 Torr aus dem Rückstand sublimiert; Ausb. 0.49 g (45%) **4b**, Schmp. 118 °C (aus PE). - ¹H-NMR (C₆D₆): δ = 0.42 (s, 18H, CH₃Si), 1.23 (s, 6, BCCH₃), 1.37 [d, 24H, NCCH₃, ³J(HH) = 7 Hz], 4.18 (sept, 4H, NCH). - ¹¹B-NMR (C₆D₆): δ = 48.7. - ¹³C-NMR (C₆D₆): δ = 5.3 (CH₃Si), 19.4 (BCCH₃), 26.3 (NCCH₃), 26.5 (NCCH₃), 49.9 (NC), 50.3 (NC). - MS (EI): m/z (%) = 422 (19) [M⁺], 407 (28) [M⁺ - Me], 393 (82) [M⁺ -2 Me], 307 (20) [M⁺ - MeNiPr₂]⁺, 153 (100) [*i*Pr₂NBC₃H₆⁺], 73 (59) [SiMe₃⁺], 43 (52) [C₃H₇⁺].

 $\begin{array}{c} C_{22}H_{52}B_2N_2Si_2 \ (422.5) \\ Gef. \ C \ 62.55 \ H \ 12.40 \ N \ 6.63 \\ Gef. \ C \ 62.54 \ H \ 12.35 \ N \ 6.40 \end{array}$

	4 a	4a'	4c	5a	5b
Formel Molmasse Kristallsystem Raumgruppe Zellparameter [Å] und [°]	$C_{20}H_{48}B_2N_2Si_2$ 394.41 monoklin $P2_1/a$ a = 16.970(3) b = 9.169(2) c = 19.664(4) $\beta = 115.58(2)$	$C_{20}H_{48}B_2N_2Si_2$ 394.41 monoklin C 2/c a = 14.574(4) b = 12.413(5) c = 30.828(11) $\beta = 101.19(3)$	$C_{14}H_{32}B_2N_2$ 250.05 triklin PI a = 6.122(3) b = 8.310(5) c = 18.795(11) $\alpha = 81.65(5)$ $\beta = 81.32(4)$ $\gamma = 70.46(4)$	$C_{38}H_{62}AuB_2N_2PSi_2$ 852.67 triklin $P\bar{1}$ a = 9.446(1) b = 12.614(4) c = 18.509(4) $\alpha = 75.55(2)$ $\beta = 88.94(1)$ $\gamma = 78.63(2)$	$C_{56}H_{76}Au_{2}B_{2}N_{2}P_{2}Si_{2}$ 1310.92 rhombisch $Pc2_{1}n$ a = 15.181(2) b = 16.497(2) c = 23.115(2)
Zellvolumen [Å ³] Z $d_{ber.}$ [g cm ⁻³] $\mu(Mo-K_a)$ [cm ⁻¹] KristGr. [mm] $2\Theta_{max}$ [°] hkl-Bereich Diffraktometer Strahlung Scan	2760 4 0.95 1.31 0.6 \cdot 0.3 \cdot 0.6 50 \pm 20, 10, 25 Zweikreis Mo- K_{α} ω	5471 8 0.96 1.32 0.2 \cdot 0.6 \cdot 0.3 50 18, 14, \pm 37 Vierkreis Mo- K_{α} $\Theta/2 \Theta$	886 2 0.94 0.50 0.7 \cdot 0.7 \cdot 0.4 48 \pm 6, \pm 9, 21 Vierkreis Mo- K_{α} ω	2093 2 1.36 36.28 $0.3 \cdot 0.5 \cdot 0.4$ 60 $\pm 13, \pm 18, 25$ Vierkreis Mo-K _{α} ω	5789 4 1.51 51.83 $0.6 \cdot 0.6 \cdot 0.6$ 50 13, 19, 27 Zweikreis Mo- K_{α} ω
Reflexe gemessen beobachtet	4993 2519 (I > 2σ _I)	1616 1547 (I > 2σ _I)	3417 2060 ($I > 2\sigma_I$)	6511 6511 ($I > 2\sigma_I$)	4863 4151 (<i>I</i> > σ _{<i>I</i>})
Verfeinerung ^{a)} anisotrop isotrop starre Gruppen Zahl d. Parameter	Si, N, C, B H CH3 ^{b)} 288	Si, N, C, B H b,c) 245	N, C, B H CH ₃ 229	Au, P, Si, N, C, B H CH ₃ ^{b,d)} 465	Au, P, Si N, C, B, H CH ₃ , C ₆ H ₅ ^{b)} 266
R-Werte	R = 0.076 $R_{\rm w} = 0.063$	R = 0.043 $R_{\rm m} = 0.035$	R = 0.062 $R_{\rm m} = 0.039$	R = 0.043 $R_{\rm m} = 0.033$	R = 0.050 $R_{\rm m} = 0.040$

Tab. 2. Angaben zu den Röntgenstrukturanalysen

^{a)} Bis auf die H-Atome am Ring wurden für die H-Atome gruppenweise gemeinsame isotrope Temperaturfaktoren verfeinert; die H-Atome folgender Gruppen wurden in berechneten Lagen eingegeben, aber nicht verfeinert: ^{b)} die tertiären H-Atome der C₃H₇-Gruppen; ^{c)} die H-Atome der Methyl-Gruppen; ^{d)} die H-Atome der Phenyl-Gruppen.

1886

Trimethylsilyl- und Triphenylphosphanauryl-substituierte 1,3-Diboretane

1,3-Bis(diisopropylamino)-2,2-bis(trimethylsilyl)-4-triphenylphosphanauryl-1,3-diboretan²²⁾ (**5a**): Bei -50 °C werden 0.41 g (0.82 mmol) Ph₃PAuCl in 20 ml THF zu 0.50 g (0.82 mmol) 2K⁺(3)²⁻ in 30 ml THF innerhalb 4 h getropft, wobei sich die orangefarbene Lösung nach Dunkelrot verfärbt. Man läßt auf 20 °C erwärmen, entfernt THF i. Vak., nimmt den Rückstand in 20 ml Pentan auf und filtriert. Aus der Lösung fallen bei -22 °C bräunliche Kristalle aus, die umkristallisiert werden; Ausb. 0.21 g (30%) farbloses **5a**, Schmp. 157 °C (Zers.). - ¹H-NMR (C₆D₆): $\delta = 0.46$ (s, 9H, CH₃Si),

Tab. 3. Atomparameter für 4a

ATOM	x	Y	z	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>
Si1	-0.18161(8)	-0.01156(13)	0.74630(8)	0.064
Sí2	0.07470(8)	-0.04307(13)	0.75237(8)	0.069
N1	0.0154(3)	0.2465(3)	0.8768(2)	0.061
N2	-0.0991(2)	0.2474(3)	0.62391(19)	0.054
B1	-0.0233(3)	0.1777(4)	0.8072(3)	0.048
B2	-0.0756(3)	0.1786(4)	0.6932(3)	0.044
C1	-0.1222(3)	0.1614(4)	0.7472(2)	0.048
C2	0.0194(3)	0.1318(4)	0.7530(2)	0.046
С3	-0.2766(4)	0.0355(7)	0.7660(5)	0.142
C4	-0.2258(4)	-0.1111(6)	0.6549(3)	0.115
C5	-0.1143(4)	-0.1412(6)	0.8217(3)	0.125
C6	0.1128(4)	0.2612(6)	0.9162(3)	0.093
C7	0.1422(5)	0.4163(6)	0.9179(4)	0.129
C8	0.1539(4)	0.1817(7)	0.9891(4)	0.129
С9	-0.0297(4)	0.3177(6)	0.9156(3)	0.095
C10	-0.0801(4)	0.4531(6)	0.8772(4)	0.123
C11	-0.0802(5)	0.2198(7)	0.9414(4)	0.134
C12	0.0030(5)	-0.1791(6)	0.6840(5)	0.158
C13	0.1304(6)	-0.1306(8)	0.8454(4)	0.175
C14	0.1597(4)	-0.0061(8)	0.7179(5)	0.173
C15	~0.1803(3)	0.3277(5)	0.5825(3)	0.075
C16	-0.2619(3)	0.2360(6)	0.5605(3)	0.106
C17	-0.1853(4)	0.4661(5)	0.6238(3)	0.096
C18	-0.0361(4)	0.2568(6)	0.5907(3)	0.083
C19	-0.0683(5)	0.1748(8)	0.5167(4)	0.130
C20	-0.0082(4)	0.4103(7)	0.5852(4)	0.129
H1	-0.1629(18)	0.225(3)	0.7471(16)	0.015
H2	0.0596(18)	0.189(3)	0.7559(17)	0.017

Tab. 4. Atomparameter für 4a'

атон	x	Y	Z	Ū *)
Si1	0.16643(9)	0.32582(12)	0.33732(4)	0.063
Si2	0.36519(9)	0.33826(12)	0.30813(4)	0.067
N1	0.3250(3)	0.5462(3)	0.38913(11)	0.064
N2	0.3505(2)	0.1549(3)	0.40425(11)	0.058
B1	0.3322(4)	0.4343(5)	0.38939(18)	0.057
B2	0.3443(4)	0.2640(5)	0.39555(19)	0.057
C1	0.2965(3)	0.3389(3)	0.35353(12)	0.048
C2	0.3815(9)	0.3596(5)	0.4279(3)	0.117
с3	0.2821(4)	0.6096(4)	0.35049(15)	0.080
C4	0.1994(4)	0.6764(4)	0.35925(16)	0.132
C5	0.3517(4)	0.6787(4)	0.33217(15)	0.128
C6	0.3667(4)	0.6118(4)	0.42833(16)	0.100
C7	0.4719(4)	0.6011(4)	0.44115(16)	0.138
C8	0.3177(4)	0.5950(4)	0.46695(16)	0.140
C9	0.3977(4)	0.1113(4)	0.44780(16)	0.087
C10	0.5011(4)	0.1364(4)	0.45789(16)	0.139
C11	0.3476(4)	0.1416(4)	0.48486(16)	0.138
C12	0.3104(4)	0.0716(4)	0.37248(16)	0.081
C13	0.3842(4)	-0.0069(4)	0.36199(16)	0.130
C14	0.2304(4)	0.0108(4)	0.38658(17)	0.136
C15	0.1026(3)	0.4370(4)	0.30301(15)	0.113
C16	0.1236(3)	0.2038(4)	0.30330(15)	0.113
C17	0.1181(3)	0.3225(4)	0.38898(14)	0.093
C18	0.3169(4)	0.4272(4)	0.26012(15)	0.113
C19	0.3762(4)	0.2045(4)	0.28186(14)	0.100
C20	0.4874(3)	0.3808(4)	0.33019(17)	0.121
H1	0.367(4)	0.363(5)	0.4522(16)	0.128
H2	0.444(4)	0.363(5)	0.431(2)	0.137

*) \overline{U} ist definiert als 1/3 der Spur des orthogonalisierten Tensors U.

Tab. 5. Atomparameter für 4c

ATOM	x	¥	z	ū*)
N1	0.0704(3)	0.5738(3)	0.65742(11)	0.058
N2	-0.1537(4)	0.8251(3)	0.85919(12)	0.067
B1	0.1247(5)	0.6336(4)	0.71495(16)	0.061
B2	0.0230(5)	0.7487(4)	0.80753(17)	0.063
C1	0.1462(6)	0.5519(4)	0.79647(16)	0.071
C2	0.1209(6)	0.8162(4)	0.73066(16)	0.071
сэ	0.0145(5)	0.6772(4)	0.58782(15)	0.069
C4	-0.2115(5)	0.8258(4)	0.59519(15)	0.097
с5	0.2165(5)	0.7389(4)	0.55126(15)	0.101
C6	0.0636(5)	0.3971(4)	0.66215(17)	0.069
C7	0.2508(5)	0.2863(4)	0.61079(16)	0.096
C8	-0.1766(5)	0.3921(4)	0.65430(17)	0.104
C9	-0.2867(6)	1.0071(4)	0.8560(2)	0.087
C10	-0.4478(5)	1.0655(4)	0.79741(17)	0.102
C11	-0.1422(6)	1.1172(4)	0.85678(19)	0.119
C12	-0.2249(7)	0.7180(5)	0.9234(2)	0.100
C13	-0.4635(8)	0.7118(5)	0.9241(2)	0.154
C14	-0.1633(7)	0.7533(5)	0.99229(19)	0.134
H1	0.296(3)	0.519(3)	0.8047(11)	0.064
H2	0.080(4)	0.459(3)	0.8165(12)	0.082
нз	0.045(3)	0.925(2)	0.7038(10)	0.051
H4	0.277 (4)	0.811(3)	0.7323(11)	0.073

Tab. 6. Atomparameter für 5a

ATOM	x	Y	Z	Ū*)
λu	0.58101(3)	0.52699(2)	0.242760(11)	0.042
P	0.50847(17)	0.71595(13)	0.21614(9)	0.049
Sil	1.01124(18)	0.42262(15)	0.25746(12)	0.062
Si2	1.00865(18)	0.16729(15)	0.30674(12)	0.068
N1	0.7626(5)	0.3006(4)	0.1480(3)	0.051
N2	0.7395(5)	0.3067(4)	0.4105(3)	0.054
B1	0.7649(6)	0.3231(5)	0.2178(4)	0.041
B2	0.7546(7)	0.3261(5)	0.3322(4)	0.041
C1	0.8981(5)	0.3131(4)	0.2783(3)	0.046
C2	0.6378(6)	0.3524(4)	0.2696(3)	0.039
с3	0.6248(7)	0.2908(5)	0.1135(3)	0.059
C4	0.5111(7)	0.3993(5)	0.0971(4)	0.069
С5	0.5659(8)	0.1900(5)	0.1604(4)	0.074
C6	0.8868(8)	0.2907(6)	0.0990(4)	0.082
с7	0.9111()	0.1817(8)	0.0746(6)	0.142
C8	0.8704(10)	0.3894(8)	0.0316(5)	0.127
C9	0.5976(7)	0.2961(6)	0.4455(3)	0.066
C10	0.4828(7)	0.4038(6)	0.4243(4)	0.081
c11	0.5438(9)	0.1949(6)	0.4314(4)	0.096
C12	0.8555(7)	0.2957(5)	0.4647(4)	0.067
C13	0.8331(9)	0.3942(7)	0.5017(4)	0.104
C14	0.8827(9)	0.1829(6)	0.5232(4)	0.106
C15	0.9265(7)	0.5508(6)	0.1873(4)	0.083
C16	1.0549()	0.4701(7)	0.3408(4)	0.107
C17	1.1898(8)	0.3796(8)	0.2174(7)	0.152
C18	0.8837(7)	0.0650(5)	0.3348(5)	0.090
C19	1.1306(8)	0.1154(7)	0.2346(5)	0.112
C20	1.1426(8)	0.1426(7)	0.3878(5)	0.108
C21	0.3135(6)	0.7663(4)	0.2055(3)	0.047
C22	0.2459(7)	0.8215(5)	0.1379(4)	0.070
C23	0.0953(8)	0.8554(6)	0.1322(4)	0.085
C24	0.0151(7)	0.8359(6)	0.1936(5)	0.080
C25	0.0815(7)	0.7824(6)	0.2618(4)	0.077
C26	0.2304(7)	0.7460(5)	0.2669(4)	0.067
C27	0.5824(6)	0.7877(5)	0.1318(3)	0.049
C28	0.6050(7)	0.8964(5)	0.1180(4)	0.063
C29	0.6631(7)	0.9460(6)	0.0533(4)	0.079
C30	0.6996(7)	0.8900(6)	-0.0021(4)	0.074
231	0.6785(7)	0.7825(6)	0.0097(4)	0.073
C32	0.6211(7)	0.7319(5)	0.0755(4)	0.067
C 3 3	0.5602(6)	0.7760(5)	0.2883(3)	0.049
C34	0.6750(7)	0.7151(6)	0.3368(4)	0.067
235	0.7234(7)	0.7612(7)	0.3899(4)	0.079
236	0.6601(9)	0.8639(7)	0.3973(4)	0.081
237	0.5439(8)	0.9237(6)	0.3509(4)	0.078
238	0.4937(7)	0.8820(5)	0.2968(4)	0.069

0.49 (s, 9H, CH₃Si), 1.26, 1.28, 1.52, 1.87 [d, je 6H, ${}^{3}J(HH) = 6.5$ Hz), 2.25 [d, 1 H, ${}^{3}J(HP) = 12$ Hz), 3.59, 4.27 (sept, je 2 H, NCH), 6.9 - 7.5 (m, 15 H, C₆H₅). - ¹¹B-NMR (C₆D₆): $\delta = 45$ (br., $b_{1/2} =$ 1.5 kHz). $- {}^{13}$ C-NMR (C₆D₆): $\delta = 4.99, 6.37$ (CH₃Si), 23.12, 24.78, 25.56, 26.44 (NCCH₃), 45.99, 49.93 (NCCH₃). - ³¹P-NMR (C₆D₆): $\delta = 39.4. - MS$ (EI): m/z (%) = 459 (2.3) [Ph₃PAu⁺], 393 (4.3), $[M^{+} - Ph_{3}PAu], 392 (3.7) [M^{+} - Ph_{3}PAuH], 379 (12.8) [M^{+}]$ $Ph_3PAu - Me$], 262 (48.4) $[Ph_3P^+]$, 73 (27.1) $[SiMe_3^+]$, 43 (100) $[C_{3}H_{7}^{+}].$

C₃₈H₆₂AuB₂N₂PSi₂ (852.7) Ber: C 53.53 H 7.33 N 3.39 Gef. C 53.00 H 7.29 N 3.27

Tab. 7. Atomparameter für 5b

ATOM	x	Y	z	Ū *)
Aul	0.63321(3)	0.0	0.21014(2)	0.043
Au2	0.76096(3)	0.00433(8)	0.30772(2)	0.041
P1	0.6317(2)	-0.0067(5)	0.11171(13)	0.044
P2	0.91075(18)	0.0027(5)	0.31565(12)	0.045
Si2	0.4737(3)	-0.0022(6)	0.42759(14)	0.058
511	0.3/88(3)	0.0194(4)	0.30716(19) 0.3475(-4)	0.061
C2	0.6244(6)	0.0095(14)	0.2999(4)	0.031
B1	0.5605(16)	-0.0543(14)	0.3233(10)	0.035
B2	0.5594(16)	0.0737(14)	0.3243(10)	0.034
N1	0.5583()	-0.1419(9)	0.3206(6)	0.050
N2	0.5730(8)	0.1583(8)	0.3281(6)	0.034
C3	0.6784 (6)	-0.0924(5)	0.0762(4)	0.038
C4	0.7443(6)	-0.13/1(5)	0.1035(4)	0.055
C6	0.7582(6)	-0.2218(5)	0.0187(4)	0.085
c7	0.6923(6)	-0.1770(5)	-0.0086(4)	0.072
C8	0.6524(6)	-0.1124(5)	0.0201(4)	0.061
С9	0.6912(6)	0.0787(6)	0.0778(4)	0.050
C10	0.7342(6)	0.0718(6)	0.0248(4)	0.075
C11 C12	0.7787(6)	0.1385(6)	0.0014(4)	0.080
C13	0.7357(6)	0.2121(0) 0.2190(6)	0.0842(4)	0.094
C14	0.6919(6)	0.1523(6)	0.1075(4)	0.077
C15	0.5198(4)	~0.0013(7)	0.0833(4)	0.051
C16	0.4621(4)	-0.0603(7)	0.1041(4)	0.065
C17	0.3746(4)	-0.0611(7)	0.0857(4)	0.087
C18	0.3448 (4)	-0.0028(7)	0.0466(4)	0.097
C20	0.4045(4)	0.0562(7)	0.0239(4) 0.0442(4)	0.065
C21	0.9676(5)	0.0036(8)	0.2461(2)	0.047
C22	0.9195(5)	0.0237(8)	0.1968(2)	0.052
C23	0.9602(5)	0.0236(8)	0.1427(2)	0.065
C24	1.0492(5)	0.0033(8)	0.1379(2)	0.079
C25	1.0973(5)	-0.0169(8)	0.1873(2)	0.070
C27	1.0500(5)	-0.0187(8)	0.3542(4)	0.045
C28	0.8958(7)	0.1255(6)	0.3951(4)	0.068
C29	0.9229(7)	0.1907(6)	0.4292(4)	0.091
C30	1.0072(7)	0.2229(6)	0.4223(4)	0.090
C31	1.0644(7)	0.1899(6)	0.3814(4)	0.077
C32	1.03/3(7)	-0.0817(6)	0.34/3(4) 0.3548/4)	0.041
C34	0.9242(7)	-0.1579(6)	0.3398(4)	0.070
C35	0.9547(7)	-0.2269(6)	0.3685(4)	0.079
C36	1.0177(7)	-0.2195(6)	0.4122(4)	0.071
C37	1.0501(7)	-0.1432(6)	0.4271(4)	0.085
C38	1.0196(7)	-0.0743(6)	0.3985(4)	0.063
C40	0.6373(18)	-0.2167(18)	0.2417(10)	0.107
C41	0.6896(16)	-0.2454(15)	0.3443(11)	0.102
C42	0.4876(12)	-0.1956(12)	0.3412(8)	0.054
C43	0.4454(16)	-0.2403(15) -0.2491(16)	0.2898(10) 0.3938(10)	0.100
C45	0.6545(13)	0.1882(14)	0.2952(9)	0.065
C46	0.6418(17)	0.2454(15)	0.2508(11)	0.102
C48	0.5073(12)	0.2129(12)	0.3535(8)	0.056
C49	0.5357(14)	0.2586(15)	0.4072()	0.091
C50	0.4607(13)	0.2682(11)	0.3107(8)	0.067
C51 C52	0.38/5(11)	-0.0752(12) -0.0362(13)	U.455U(8) 0.4573(9)	0.077
C53	0.4478(12)	0.0949(12)	0.4691(8)	0.085
C54	0.3987(13)	0.0552(13)	0.2322(8)	0.097
C55 C56	0.3129(14)	-0.0789(14) 0.0853(13)	0.2976(10)	0.112

*) \overline{U} ist definiert als 1/3 der Spur des orthogonalisierten Tensors U.

1,3-Bis(diisopropylamino)-2,2-bis(trimethylsilyl)-4,4-bis-(triphenylphosphanauryl)-1,3-diboretan (5b): 0.354 g (0.73 mmol) Ph₃PAuCl in 15 ml THF werden bei 0°C zu 0.450 g (0.73 mmol) $2K^{+}(3)^{2-}$ in 15 ml THF innerhalb 15 min getropft, wobei sich die Lösung nach Dunkelrot verfärbt. Nach 2 h wird THF i. Vak. entfernt, der Rückstand in Pentan aufgenommen und filtriert. Beim Abkühlen fallen gelbe Kristalle an; Ausb. 0.103 g (22%) 5b, Schmp. $137^{\circ}C$ (Zers.). - ¹H-NMR (C₆D₆): $\delta = 0.63$ (s, 18, CH₃Si), 1.48 $(d + \text{überlagertes sept}, 26 \text{ H}, {}^{3}J(\text{HH}) = 6.8 \text{ Hz}), 4.59 \text{ (sept}, 2 \text{ H}), 6.2$ (br., 2H), 7.0-7.6 (m, 30H, C₆H₅). - ¹³C-NMR (C₆D₆): δ = 49.44, 48.26 (NC), 27.06 (NCCH₃), 5.2 (CH₃Si). $-{}^{31}$ P-NMR (C₆D₆): $\delta =$ 36.8. - MS (EI): m/z (%) = 851 (3) [M⁺ - AuPPh₃], 836 (15) $[M^+ - AuPPh_3 - Me]$, 793 (100) $[M^+ - AuPPh_3 - 2 Me - Me]$ $C_{3}H_{7}$], 459 (71) [AuPPh₃⁺], 392 (19) [M⁺ - 2 AuPPh₃]⁺, 377 (73) $[M^+ - 2 AuPPh_3 - Me].$

> $C_{36}H_{76}Au_2B_2N_2P_2Si_2$ (1310.9) Ber. C 51.30 H 5.84 N 2.15 P 4.73 Gef. C 51.13 H 5.90 N 2.17 P 5.00

Röntgenstrukturanalysen von 4a, 4a', 4c, 5a und 5b²³): Die Angaben sind in Tab. 2 zusammengestellt. Alle Berechnungen wurden mit den Programmen SHELX 76 und SHELXS 86²⁴⁾ durchgeführt. Die Atomformfaktoren wurden der Arbeit von Cromer und Mann²⁵⁾, die Werte für die anomale Dispersion von Au den International Tables²⁶⁾ entnommen.

CAS-Registry-Nummern

1: 105663-67-0 / 2: 105663-68-1 / 3: 105663-69-2 / $2K^+(3)^2$: 105663-70-5 / $2Li^+(3)^2$: 120638-12-2 / 4a: 105663-71-6 / 4a': 120638-11-1 / 4b: 105663-72-7 / 4c: 120638-13-3 / 5a: 120638-13-1 / 5a: 120638 14-4 / 5b: 105693-62-7 / HN(SiMe₃)₂: 999-97-3 / Ph₃PAuCl: 14243-64-2 / 1,3-Diisopropylamino-1,3-dihydro-1,3-diboret: 97826-17-0

- ¹⁾ K. Krogh-Jespersen, D. Cremer, J. D. Dill, J. A. Pople, P. v. R. Schleyer, J. Am. Chem. Soc. 103 (1981) 2589.
- ²⁾ M. Hildenbrand, H. Pritzkow, U. Zenneck, W. Siebert, Angew. Chem. 96 (1984) 371; Angew. Chem. Int. Ed. Engl. 23 (1984) 371.
- ³⁾ P. Hornbach, M. Hildenbrand, H. Pritzkow, W. Siebert, Angew. Chem. 98 (1986) 1121; Angew. Chem. Int. Ed. Engl. 25 (1986) 1112
- ⁴⁾ W. Siebert, A. Krämer, H. Irngartinger, unveröffentlichte Ergebnisse.
- ⁵⁾ R. Wehrmann, Ch. Pues, H. Klusik, A. Berndt, Angew. Chem. 96 (1984) 372; Angew. Chem. Int. Ed. Engl. 23 (1984) 372; H. Meyer, G. Schmidt-Lukasch, G. Baum, W. Massa, A. Berndt, Z. Naturforsch., Teil B, 43 (1988) 801.
- ⁶⁾ G. Schmid, G. Baum, W. Massa, A. Berndt, Angew. Chem. 98 (1986) 1123; Angew. Chem. Int. Ed. Engl. 25 (1986) 1111.
- ⁷⁾ M. Hildenbrand, Dissertation, Universität Heidelberg 1986.
- M. Hildenbrand, H. Pritzkow, W. Siebert, Angew. Chem. 97 (1985) 769; Angew. Chem. Int. Ed. Engl. 24 (1985) 759.
 T. V. Baukova, Y. L. Slovokhotov, Y. T. Struchkov, J. Orga-
- nomet. Chem. 220 (1981) 125.
- ¹⁰⁾ K. P. Hall, D. M. P. Mingos, Progr. Inorg. Chem. 32 (1984) 237.
- ¹¹⁾ R. Wehrmann, H. Klusik, A. Berndt, Angew. Chem. **96** (1984) 810; Angew. Chem. Int. Ed. Engl. **23** (1984) 826.
- ¹²⁾ P. H. M. Budzelaar, P. v. R. Schleyer, K. Krogh-Jespersen, Angew. Chem. 96 (1984) 809; Angew. Chem. Int. Ed. Engl. 23 (1984) 809
- ¹³⁾ V. Schehlmann, Universität Heidelberg, unveröffentlichte Ergebnisse.
- ¹⁴⁾ R. Hoffmann, Angew. Chem. 94 (1982) 725; Angew. Chem. Int. Ed. Engl. 21 (1982) 725.
- ¹⁵⁾ Y. Jiang, S. Alvarez, R. Hoffmann, Inorg. Chem. 24 (1985) 749;
- P. K. Mehrotra, R. Hoffmann, *ibid.* 17 (1978) 2187.
 ¹⁶⁾ P. Pyykkö, J. P. Desclaux, *Acc. Chem. Res.* 12 (1979) 276; K. S. Pitzer, ibid. 12 (1979) 271.
- ¹⁷⁾ F. Scherbaum, A. Grohmann, B. Huber, C. Krüger, H. Schmidbaur, Angew. Chem. 100 (1988) 1602; Angew. Chem. Int. Ed. Engl. 27 (1988) 1602; F. Scherbaum, B. Huber, G. Müller, H. Schmid-

baur, ibid. 100 (1988) 1600; ibid. 27 (1988) 1600; H. Schmidbaur, F. Scherbaum, B. Huber, G. Müller, ibid. 100 (1988) 441; ibid.

- 27 (1988) 419. ¹⁸⁾ E. I. Smyslova, E. G. Perevalova, V. P. Dyadchenko, K. I. Grandberg, Y. L. Slovokhotov, Y. T. Struchkov, J. Organomet. Chem. 215 (1981) 269.
 ¹⁹ P. L. Timms, J. Chem. Soc., Dalton Trans. 1972, 830.
 ²⁰ W. Siebert, M. Hildenbrand, P. Hornbach, G. Karger, H. Pritz-
- kow, Z. Naturforsch., im Druck.

- kow, Z. Naturjorscn., im Druck.
 P. Hornbach, Dissertation, Universität Heidelberg 1986.
 G. Karger, Dissertation, Universität Heidelberg 1989.
 Weitere Einzelheiten zu den Kristallstrukturbestimmungen können beim Fachinformationszentrum Energie, Physik, Mathe-

matik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummern CSD-52130 (für 4a und 5b) bzw. CSD-53943 (für 4a', 4c und 5a), der Autorennamen und des Zeitschriftenzitats angefordert werden.

- ²⁴⁾ G. M. Sheldrick, SHELX 76, A Program for Crystal Structure Determination, Cambridge 1976; G. M. Sheldrick, SHELXS 86, Göttingen 1986.
- ²⁵⁾ D. T. Cromer, J. B. Mann, Acta Crystallogr., Sect. A, 24 (1968) 321.
- ²⁶⁾ International Tables for X-ray Crystallography, Bd. IV, S. 149, The Kynoch Press, Birmingham 1974.

[103/89]